知识图谱

首页 标签 知识图谱
# 知识图谱 #
关注
3165内容
|
6天前
|
一周打完1000场官司,中科院发布首个AI法庭AgentCourt!
【9月更文挑战第27天】中国科学院近日发布了名为AgentCourt的人工智能法庭技术,引发广泛关注。该技术可在一周内完成1000场官司的审理,有望显著提升司法效率,减少人为干扰,但同时也面临质疑,如是否能准确理解案件复杂性及背后的伦理、隐私和安全等问题。支持者认为它有助于提高判决公正性和一致性,而反对者则担忧其可能导致司法过程机械化,忽视人文因素。AgentCourt在自然语言处理和知识图谱构建方面展现了最新进展。论文详情见:https://doi.org/10.48550/arXiv.2408.08089
GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践
本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。
深度学习在自然语言处理中的应用与未来展望
本文探讨了深度学习技术在自然语言处理(NLP)领域的应用,重点分析了神经网络模型如循环神经网络(RNN)、长短期记忆网络(LSTM)和Transformer等在文本生成、语义理解及情感分析等任务中的卓越表现。通过具体案例展示了这些模型如何有效解决传统方法难以处理的问题,并讨论了当前面临的挑战及未来可能的发展方向,为进一步研究提供了新的视角和思路。
|
12天前
| |
GraphRAG 与 RAG 的比较分析
Graph RAG 技术通过引入图结构化的知识表示和处理方法,显著增强了传统 RAG 系统的能力。它不仅提高了信息检索的准确性和完整性,还为复杂查询和多步推理提供了更强大的支持。
文档解析(大模型版)服务体验评测
体验文档解析(大模型版)服务时,清晰的入门指南、操作手册和FAQ至关重要。若存在不足,需增加直观的操作流程说明(如动画演示)、深化高级功能文档,并提供实时在线支持,帮助用户快速解决问题。
免费试用


http://www.vxiaotou.com